Given a grammar G, with non-terminals N and terminals T.

1 First Sets:

To generate: FIRST(X) for all $X \in N \cup T$.

1. If $X \in T$, FIRST(X) = \{X\}.
2. If $X \rightarrow \varepsilon$ is a production, add ε to FIRST(X).
3. If $X \rightarrow Y_1Y_2\ldots Y_i\ldots Y_k$ is a production: Base case $i = 1$. Induction: add everything in FIRST(Y_i) except ε to FIRST(X), then if ε is in FIRST(Y_i) increment i and repeat; else stop. If $i > k$ add ε to FIRST(X) and stop. Repeat for all productions.
4. Repeat step 3 until there is no change to any of the FIRST sets.

2 Follow Sets:

To generate: FOLLOW(X) for all $X \in N$.

Add end marker $\$ \notin N \cup T$ to symbol set.

1. Place $\$ \in$ FOLLOW(S), where S is the start symbol in G.
2. If $A \rightarrow \alpha B\beta$ is a production, add everything in FIRST(β) except ε to FOLLOW(B). Repeat for every production and every variable that is not at the end of the production.
3. If $A \rightarrow \alpha B\beta$ and ε is in FIRST(β), or $A \rightarrow \alpha B$ is a production, add everything in FOLLOW(A) to FOLLOW(B).
4. Repeat step 3 for every non-terminal in every production until nothing new is added to any of the FOLLOW sets.